Search results for " gradient dependence"
showing 4 items of 4 documents
Systems of quasilinear elliptic equations with dependence on the gradient via subsolution-supersolution method
2017
For the homogeneous Dirichlet problem involving a system of equations driven by \begin{document}$(p,q)$\end{document} -Laplacian operators and general gradient dependence we prove the existence of solutions in the ordered rectangle determined by a subsolution-supersolution. This extends the preceding results based on the method of subsolution-supersolution for systems of elliptic equations. Positive and negative solutions are obtained.
Some recent results on a singular p-laplacian equations
2022
Abstract A short account of some recent existence, multiplicity, and uniqueness results for singular p-Laplacian problems either in bounded domains or in the whole space is performed, with a special attention to the case of convective reactions. An extensive bibliography is also provided.
Location of solutions for quasi-linear elliptic equations with general gradient dependence
2017
Existence and location of solutions to a Dirichlet problem driven by $(p,q)$-Laplacian and containing a (convection) term fully depending on the solution and its gradient are established through the method of subsolution-supersolution. Here we substantially improve the growth condition used in preceding works. The abstract theorem is applied to get a new result for existence of positive solutions with a priori estimates.
Some recent results on singular $ p $-Laplacian systems
2022
Some recent existence, multiplicity, and uniqueness results for singular p-Laplacian systems either in bounded domains or in the whole space are presented, with a special attention to the case of convective reactions. A extensive bibliography is also provided.