Search results for " gradient dependence"

showing 4 items of 4 documents

Systems of quasilinear elliptic equations with dependence on the gradient via subsolution-supersolution method

2017

For the homogeneous Dirichlet problem involving a system of equations driven by \begin{document}$(p,q)$\end{document} -Laplacian operators and general gradient dependence we prove the existence of solutions in the ordered rectangle determined by a subsolution-supersolution. This extends the preceding results based on the method of subsolution-supersolution for systems of elliptic equations. Positive and negative solutions are obtained.

System of elliptic equationDirichlet problemApplied Mathematics010102 general mathematicsMathematical analysisMathematics::Analysis of PDEsSystem of linear equations01 natural sciences(pq)-Laplacian010101 applied mathematicsSubsolution-supersolution and gradient dependenceSettore MAT/05 - Analisi MatematicaHomogeneousDiscrete Mathematics and CombinatoricsRectangle0101 mathematicsLaplace operatorAnalysisDirichlet problemMathematicsDiscrete & Continuous Dynamical Systems - S
researchProduct

Some recent results on a singular p-laplacian equations

2022

Abstract A short account of some recent existence, multiplicity, and uniqueness results for singular p-Laplacian problems either in bounded domains or in the whole space is performed, with a special attention to the case of convective reactions. An extensive bibliography is also provided.

singular termMathematics - Analysis of PDEsSettore MAT/05 - Analisi Matematicaquasi-linear elliptic equation gradient dependence singular term entire solution strong solution35-02 35J62 35J75 35J92General Mathematicsgradient dependencestrong solutionFOS: Mathematicsentire solutionquasi-linear elliptic equationAnalysis of PDEs (math.AP)
researchProduct

Location of solutions for quasi-linear elliptic equations with general gradient dependence

2017

Existence and location of solutions to a Dirichlet problem driven by $(p,q)$-Laplacian and containing a (convection) term fully depending on the solution and its gradient are established through the method of subsolution-supersolution. Here we substantially improve the growth condition used in preceding works. The abstract theorem is applied to get a new result for existence of positive solutions with a priori estimates.

subsolution-supersolutionGradient dependenceApplied Mathematics010102 general mathematicsMathematical analysisMathematics::Analysis of PDEs$(pQuasi-linear elliptic equationq)$-laplacian01 natural sciences010101 applied mathematics(p q)-laplacian; Gradient dependence; positive solution; Quasi-linear elliptic equations; subsolution-supersolution; Applied Mathematicspositive solutionSettore MAT/05 - Analisi MatematicaQA1-939Quasi linear0101 mathematicsquasi-linear elliptic equationsMathematics(p q)-laplacianMathematics
researchProduct

Some recent results on singular $ p $-Laplacian systems

2022

Some recent existence, multiplicity, and uniqueness results for singular p-Laplacian systems either in bounded domains or in the whole space are presented, with a special attention to the case of convective reactions. A extensive bibliography is also provided.

singular termMathematics - Analysis of PDEsQuasi-linear elliptic system gradient dependence singular term entire solution strong solution.Settore MAT/05 - Analisi Matematica35-02 35J62 35J75 35J92gradient dependencestrong solutionFOS: Mathematicsentire solutionQuasi-linear elliptic systemAnalysis of PDEs (math.AP)
researchProduct